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CHAPTER 1.  INTRODUCTION 

 

1.1 Study objectives 
 
The objective of this research is to develop a systematic methodology to locate shelters considering both 

transportation and social factors in the aftermath of disasters. When anticipated demands for hurricane evacuation 

shelter spaces exceed existing capacity as defined by the preceding standards, there is a need to utilize less preferred 

facilities. It is critical that shelter selection decisions be made carefully considering both accessibility and facility 

conditions, and in consultation with local emergency management and public safety officials. While Red Cross and 

other relief agencies propose strategies to locate shelters, they currently do not consider how evacuees choose 

facilities based on accessibility to shelters and the in-facility congestion. This was evident in recent disasters such as 

Hurricane Katrina and Rita where some of the smaller shelters turned out to be inaccessible or unsafe for evacuees 

to use. The two chapters that follow develop mathematical frameworks to locate shelters in disasters using network 

optimization techniques and develop new solution approaches to solve them. 

1.2 Organization of the research 

The remainder of the research is organized as follows. The next chapter provides a 

mathematical model to consider traveler routing and in facility delays in the location of facilities. 

Chapter 3 considers the use of social cost functions to optimize the location of facilities in a 

network. Chapter 4 provides conclusions and directions for future research. 
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CHAPTER 2.  RELIABLE FACILITY LOCATION DESIGN UNDER SERVICE 

DISRUPTION, EN-ROUTE CONGESTION AND IN-FACILITY QUEUING 

This chapter studies the planning of service facility locations under consideration of 

customers’ en-route travel and their in-facility delay, as well as the reliability of service facilities 

against natural or man-made hazards.  

2.1 Introduction 

Frequent natural and man-made catastrophic events highlight the need for a reliable and 

responsive service network to mitigate the adverse impacts and meet non-routine service 

demand. One of the key components of such designs is to select locations for service facilities 

(e.g., shelters, emergency medical centers, etc.), which should be properly made to accommodate 

traffic demand meanwhile mitigating en-route traffic congestion (Bai et al., 2011). Furthermore, 

when demand exceeds the capacity of service facilities, in-facility congestion inevitably induces 

significant waiting delays, human suffering and enormous social cost. For instance, in the 2010 

Haiti earthquake, thousands of people flocked to a few point-of-distribution centers where food 

and water became insufficient (Jaller and Holguín-Veras, 2013). Due to the unexpected disasters, 

facility service disruption often occurs, and customers may sometimes be reassigned to more 

distant facilities that increases system operational costs and worsens both en-route traffic 

congestion and in-facility delay. As such, strategic design of service facility locations should not 

only ensure customer service with minimal en-route and in-facility congestion under normal 

scenarios, but also reduce human sufferings and negative social-economic consequences under 

disruption scenarios. 

In recent years there is a large body of literature on facility location problems with in-

facility congestion, most of which incorporated queuing theory models, e.g., M/M/1 (Zhang et 

al., 2009), M/G/1 (Berman et al., 1985), and M/M/n (Larson, 1974, 1975; Zhang et al., 2010). 

Earlier models attempted to capture the capability that customer demand can be covered by the 

facility. They achieve a certain level of service by either providing redundant coverage (Daskin, 

1982; 1983, ReVelle and Hogan, 1989; Ball and Lin, 1993) or explicitly considering the queuing 

aspect of the problem (Larson 1974, 1975; Berman et al., 1985; Marianov and ReVelle, 1996). 
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Recent studies further integrated the impact of in-facility congestion in location-allocation 

problems to determine the optimal number and location of facilities, their service capacity, and 

the assignment of customers (Marianov and Serra, 2002; Aboolian et al., 2008; Syam, 2008; 

Castillo et al., 2009; Corrêa et al., 2009; Aboolian et al., 2012). These models were commonly 

used for the design of service networks in normal operational contexts (e.g., healthcare, banking, 

or ticket services), and emergency services in disaster contexts (e.g., ambulances, fire stations, 

shelters and point-of-distribution). Zhang et al. (2009) formulated a preventive healthcare facility 

location problem and incorporated customers’ in-facility congestion as an M/M/1 queue in a 

nonlinear optimization framework. Later, the same authors extended their model to an M/M/n 

queue and proposed a bi-level non-linear mathematical program under user equilibrium to 

improve accessibility of preventive healthcare centers (Zhang et al., 2010). Considering walking, 

waiting and security risk effect, Jaller and Holguín-Veras (2013) proposed an approximate 

optimization formulation to minimize the total social cost of human suffering in the 

configuration of PODs network. Minimizing queuing effects was also frequently considered in 

competitive facility location problems (Marianov et al., 2008; Zhang and Rushton, 

2008). Kwasnica and Stavrulaki (2008) explored competitive facility location and capacity 

decisions by considering queuing delay in a two-stage game model and conducted a comparative 

analysis on system equilibrium under three different monopoly conditions. In general, these 

models have a similar assumption that transportation cost can be estimated by simple shortest 

travel distances and hence no traffic congestion exists. 

The impact of traffic congestion on customer access cost and facility location design is 

gaining more attention in recent years. For example, Bai et al. (2011) and Hajibabai and Ouyang 

(2013) examined traffic congestion impact and incorporated shipment routing decisions 

endogenously in supply chain design problems. Hajibabai et al. (2013) later extended this idea to 

incorporating the impact of freight traffic on deterioration of highway pavement infrastructure. 

Traffic routing under congestion was also considered in shelter location problems (Sherali and 

Carter, 1991; Li et al., 2012). Konur and Geunes (2010; 2011) analyzed a two-stage game to 

characterize the qualitative effects of traffic congestion costs on supply chain activities in a 

competitive environment. These existing studies are very relevant, but they did not explicitly 

capture the occasional unavailability of the involved facilities; i.e., a built facility may become 

unavailable to customers either due to limited capacity or due to the impact of disasters. Since 
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site-specific facility availability and reliability directly affects customer allocation and traffic 

assignment, they should be incorporated into facility location design. Omitting the service 

disruption impact may result in excessive transportation cost, low service quality, and even high 

socio-economic penalty (e.g., loss of life and properties in an evacuation system). 

A related group of literature deals with such reliability issues; i.e., built facilities may be 

unable to provide service due to facility disruptions (Bundschuh, Klabjan and Thurston, 2003; 

Snyder and Daskin, 2005) or link failures (Nel and Colbourn, 1990; Eiselt, Gendreau and 

Laporte, 1996). A number of reliable location models have also been proposed to address 

possible facility disruption risks in various contexts (e.g., Berman et al., 2007; Snyder et al., 

2007; Shen et al., 2011; Qi et al., 2010; Friesz, 2011; Friesz et al., 2011; Peng et al., 2011). For 

example, Qi et al. (2010) and Chen et al. (2011) integrated inventory decisions into the reliable 

location design framework; An et al. (2013) examined the impact of service disruption on the 

transit-based evacuation pick-up location design; Li and Ouyang (2010b, 2012) explored facility 

location models for several types of network surveillance sensors under various malfunction 

risks. In recent year, exploring different facility disruption patterns was also of particular interest 

from site-independent (Snyder and Daskin, 2005; Chen et al., 2011), site-dependent (Cui et al., 

2010), to spatially-correlated and cascading (Li and Ouyang, 2010a; Li et al., 2013) facility 

failures. Despite all the efforts in respective areas, to the best of the authors’ knowledge, no 

previous study has addressed the interrelationship among facility location design, en-route traffic 

congestion, in-facility waiting delay and probabilistic service disruption in a systematic service 

network design framework. 

To fill these gaps, this project first presents a scenario-based mathematical model that 

integrates service disruption risks, en-route traffic congestion and in-facility delay across the 

normal and all probabilistic service disruption scenarios into the facility location problem. 

Specifically, the model determines the optimal facility location, traffic routing, and system 

operation strategies including customer-to-facility assignment and server/resource allocation. In 

this project, we use queuing theory to model the in-facility congestion and the impact of service 

delay cost on the system operation. The integration of facility location, service allocation, traffic 

routing, queuing delay and service disruption uncertainty in the same modeling framework 

makes the problem highly challenging, due to the fact that (i) there is an exponential number of 

disruption scenarios, (ii) in each scenario facility location and customer allocation involves a 
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large number of integer variables, and (iii) traffic routing and queuing delay functions are highly 

non-linear. To tackle such challenges, we propose a series of approximation treatments that can 

yield a lower bound (LB) and an upper bound (UB) to the original model. The main idea is to 

approximate the various customer arrival rates and en-route travel times respectively by their 

expectations. This treatment enables us to develop a more tractable MINLP formulation that 

significantly reduces the difficulties associated with model analysis and computation, and the 

approximation is found to represent the original model rather precisely. A customized 

Lagrangian relaxation (LR) solution framework is further developed to decompose the 

approximation model into two sub-problems. One of the sub-problems determines both facility 

location and service allocation decisions, and it is reformulated into a conic program. The other 

sub-problem becomes a standard traffic equilibrium problem that can be solved easily. A series 

of numerical experiments are performed on both a hypothetical and an empirical case to illustrate 

the efficiency and validity of our proposed approximation model and solution algorithm. 

Sensitivity analyses are also conducted to draw insights. The proposed modeling framework is 

generic and can be applied to a wide range of service facility location planning problems under 

probabilistic service disruption, e.g., bank, hospital, and shelter or emergency health center under 

disasters. 

The remainder of this project is organized as follows. Section 5.2 introduces the cost 

components and the scenario-based MINLP model. Section 5.3 presents the approximation 

method which yields the lower and upper bounds. Section 5.4 develops the LR based algorithm. 

Section 5.5 shows the results from a series of numerical experiments. Section 5.6 provides 

conclusions and briefly discusses future research directions. 

2.2 Reliable Service Facility Location Model 

This section presents a scenario-based MINLP model that simultaneously addresses 

facility location, service capacity, service allocation, and traffic routing decisions under en-route 

congestion and in-facility delay across the normal and all probabilistic service disruption 

scenarios.  

We assume that a set of customer groups, { }I 1,2, , I=  , are discretely located in a 

given region, and each customer group Ii ∈  has some demand to be satisfied in service facilities, 
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which follows a Poisson process with rate iω  per unit time. Facilities can be opened among a set 

of candidate locations, { }J 1, 2, , J=  , to serve these customers. For an opened facility at Jj ∈ , 

regardless of its service capacity, requires a fixed infrastructure investment jd  including 

construction, basic operation and resource supply. For computational convenience, it is prorated 

to an equivalent hourly cost. In the planning stage, the agency will decide where to build service 

facilities among the candidate locations J . If we represent these decisions by a set of binary 

variables { }Jjy j= ∈y , where 

1, if location   is selected to open a service facility
0, otherwise

,j

j
y 

= 


 

then the total service facility set-up cost is J
( )y j j

j
S d y

∈

= ∑
. 

Considering the impacts of manmade and natural disasters, we further assume that every 

opened facility is subject to independent and identically distributed Bernoulli probabilistic 

disruption with probability 0 ≤  q<1. Since each facility is either disrupted or functioning, there 

are |J|2  possible facility disruption scenarios, which we denote by set S, and we let 
s
jδ  be a 

binary parameter that equals to 1 if facility j is functioning in scenario Ss ∈  and 0 otherwise. Let 
sP  denote the probability for scenario Ss ∈  to occur, which depends on the number of disrupted 

facilities in J  and can be expressed as 
J J

J

(1 )
s s
j j

j jsP q q
δ δ

∈ ∈

−∑ ∑
= − .  

Another key decision in the strategic service system planning is to pre-assign each 

customer group to R  ( JR ≤ ) built facilities with priorities. We denote this decision by binary 

variable { }I, Jijrx i j= ∀ ∈ ∈x  for 1, ,r R=  , where 

1, if is customer group '   service facility location choice 
0, otherwise

th

ijr
j i

x
s r

= 
 . 

The customer assignment strategy depends on the availability of pre-assigned facilities 

for group i; i.e., in scenario Ss ∈ , group i will check the functioning facilities and choose the first 
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functioning facility according to the pre-assigned priority order. If all built facilities in the 

priority list are disrupted in some extreme cases, all customers in group Ii ∈  has to lose service 

and suffer a penalty cost. Following the idea in Cui et al. (2010), we assign the unsatisfied 

demand to a dummy “emergency facility”, indexed by J 1j = + , which incurs a fixed cost 

J 1 0f + =
, failure probability J 1 0q + =

 and a unit transportation cost (as penalty cost) η  for all 

customer groups Ii ∈ . Furthermore, we denote the actual customer-to-facility assignment for 

customer group i to non-emergency facility j in scenario s as { }I, J,ss
ijx i j S= ∀ ∈ ∈ ∈sx , where  

1, if facility  is customer group '  service facility choice under scenario 
0, otherwise

s
ij

j i s s
x 

= 
 . 

The arrival of customers’ demand at a functioning facility j also follows a Poisson 

process with rate I

s s
j i ij

i
xλ ω

∈

= ∑
. Besides opening facilities, we also determine the service capacity 

denoted by 
s
jc
; i.e., the number of identical servers for each facility at location j in scenario s. 

For simplicity, we assume that the service time of each server is exponentially distributed with 

rate 0µ , and there is a site-dependent service cost jm
 per server per unit time. For model 

simplicity, we consolidate all 
s
jc
 servers in facility j into one with an equivalent service rate 

0
s s
j jcµ µ= ⋅

. Now the queuing system in each facility j follows an M/M/1 FCFS (first-come, first-

served) mode, and the expected total time that customers spend on waiting and receiving service 

per unit time in facility j in scenario s is 
,

s
j

s s
j jµ

λ
λ− J, Sj s∀ ∈ ∈  if 

s s
j jµλ <

. Recall that the service 

cost in facility j is proportional to the number of servers, 0

s
j

jm
µ

µ , and hence the total in-facility 

congestion cost ( , )W s sμλ  per unit time in scenario s is:  
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J 0

( , )
s s
j j

js s
j j j

W m
µ

µ

βλ
λ µ∈

 
= +  − 

∑s sμλ
, 

s s
j jµλ <

, J, Sj s∀ ∈ ∈ , 
 

where parameter β  denote the in-facility waiting time cost, and it also captures the relative 

weight of customer waiting cost against other cost components. ( , )W s sμλ  can be further 

simplified by eliminating the decision variable 
s
jµ , J, Sj s∀ ∈ ∈ ; namely, if (1) is minimized over 

s
jµ , the optimal service rate is concluded to be 

0s s
j j

jm
µ βλ λ+ ⋅

 in each scenario Ss ∈ . Then 

equation (1) is simplified as 

J 0 0

( ) 2 j js s
j j

j

m m
W

β
λ λ

µ µ∈

 
= ⋅ +  

 
∑sλ

, J, Sj s∀ ∈ ∈ . 
 

Customers travel to the assigned functioning service facilities via a transportation 

network ( )M N,  A= , where N is the set of nodes and A is the set of directed links, and I, J N⊂ . 

For each node Nn∈ , we define An
+

 as the set of outbound flow links starting from node n, and 

An
−

 is the set of inbound flow links ending in n. In an arbitrary scenario s, variable ,
s
i jk  denotes 

the fraction of customer demand from customer group Ii ∈  to facility location Jj ∈ . On each 

link Aa ∈ , the flow associated with origin Ii ∈  to destination Jj ∈  in scenario s is 
, ,i j s

af , and 

hence the corresponding total link flow 
s
az  satisfies 

, ,

I J

s i j s
a a

i j
z f

∈ ∈

= ∑∑
, Aa∀ ∈ . 

 

The link travel time ( )s s
a at z  is assumed to be a function of the link flow based on the BPR 

function (U.S. Bureau of Public Roads); i.e., 

12 
 



 13 

( )0 4( ) 1 0.15( ) , if s s s s
a a a a a a at z t z C z C= + ≤ ,  

where 
0
at  and aC  are respectively the free flow travel time and traffic capacity of link Aa ∈ . In 

some extreme cases, e.g., there are very few functioning facilities left (which is very rare, but 

possible), some link flows may exceed their capacities, i.e. 
s
a az C> . To accommodate such 

possibilities, we further assume that the link travel time ( )s s
a at z  for 

s
a az C>  is a simple linear 

projection of the BPR function that is continuous and smooth at point ( )0,1.15 aaC t
, as follows: 

0 0( ) 1.75 0.6 ( ) , if s s s s
a a a a a a a at z t t C z z C= − > .  

We also use  α  to denote the monetary value of travel time which captures the relative 

weight of total travel cost against the facility setup and service costs, and thus the total expected 

travel cost ( )T sz  per unit time in scenario s can be written as 

A

( ) ( )s s s
a a a

a

T z t zα
∈

= ∑sz
. 

       

With the parameters and decision variables described above, we formulate the total 

expected system cost across all probabilistic service disruption scenarios in S, as follows, 

( ) , J 1
S A J I0 0J

( ) 2, , , , , : = j js s s s s s
a a a j j i

s
i

a j
j

j i
j

m
y P xd

m
z t z

β
α λ λ η

µ µ
ω +

∈ ∈ ∈ ∈∈

  
 + + +   

Φ +
 

∑ ∑ ∑ ∑ ∑s s s sx x y z f k
. 

 

The scenario-based reliable facility location model is formulated as a mixed integer non-

linear program (8) as follows. It determines the optimal service facility locations { }jy , facility 

priority decision of each customer group{ }ijrx , customer-to-facility assignments { }s
ijx  in each 

scenario, and link flow related variables{ }s
az , { }, ,i j s

af and  { },
s
i jk as a result of optimal traffic 

assignment to minimize the total expected system cost ( ), , , , ,Φ s s s sx x y z f k , which includes 
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facility setup cost ( )S y , en-route travel cost ( )sT z  and in-facility delay cost ( )sW λ  across all 

possible facility disruption scenarios.  

 

, , , , ,, J 1
S A J I I I0 0J

Min ( ) 2 j js s s s s s
a a aj i ij i ij i

s a j i i i
j i

j

m m
P z t z x xd y x

β
α ω ω η

µ µ
ω +

∈ ∈ ∈ ∈ ∈ ∈∈

  
 + + +     

+∑ ∑ ∑ ∑ ∑ ∑∑s s s sx x y z f k

 

(1a)  

subject to   (3), (4), (5), and  

, I, J, Ss s
i j i ijk x i j sω= ∀ ∈ ∈ ∈  (1b)  

,
, , , ,

A A
,

, I
0, N\(I J)

, Jn n

s
i j

i j s i j s
a a

a a s
i j

k n
f f n

k n
+ −∈ ∈

 ∀ ∈
− = ∀ ∈
− ∀ ∈

∑ ∑   (1c)  

1
I, J

R

ijr j
r

x y i j
=

≤ ∀ ∈ ∈∑  (1d)  

, J 1,
1J

1 I,1 1
r

ijr i l
lj

x Rx i r+
=∈

+ = +∈ ≤ ≤∀∑∑  (1e)  

1

, J 1,
1

1 I
R

i r
r

x i
+

+
=

= ∀ ∈∑  (1f) 

, 1
J

J 1 I, Ss s
iij

j

xx i s+
∈

+ = ∀ ∈ ∈∑  (1g)  

{ } { }
{ }

1 J |J| 1 \, , 1
I, J | J | 1 , 1, , 1

l r

s s s
ij ijr j ij l j

j j
x x x i j r Rδ δ′ ′

′∈ += −

≥ ∀ ∈ ∈ + = +− ∑ ∑


   (1h)  

{ }, , 0,1 I,1 , S, 1, 1J +1 ,s
j ij ijry x i s r Rjx = ∀ ∈ ≤ ≤ ∈ = +  (1i)  

, ,
, 0 A I S, , , J, ,s s i j s

a i j a a i sz k f j≥ ∀ ∈ ∈ ∈∈   

 

The objective function (8a) minimizes the total expected system cost. Constraints (8b) 

define the traffic flow assigned for each OD pair (i, j) in scenario s. Constraints (8c) enforce 

traffic flow conservation at all origins, destinations and other network nodes. Constraints (8d) 

guarantee that a facility should be built before assigned to a customer group. Constraints (8e) 

state that for each customer group Ii ∈ at lever r, either they are assigned to a service facility Jj ∈  

or an emergency facility J +1 , but for levels l r< , no pre-assignment to emergency facility 
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occurs. Constraints (8f) require each customer to be assigned to the emergency facility at a 

certain level. Constraints (8g) assure that in scenario s each customer group Ii ∈  will actually be 

assigned either to one of its pre-assigned functioning facilities or the “emergency facility”. 

Constraints (8h) implement the actual customer assignment strategy based on the disruption 

scenario s  and pre-assigned priority orders. Constraints (8i) and (8j) specify all binary and 

nonnegative variables. 

Model (8) is a non-convex, nonlinear, mixed-integer, and scenario-based stochastic 

program. The facility location part of the problem is by itself NP-hard, while the cost functions 

of in-facility waiting and en-route travel are highly non-linear. Most importantly, the 

stochasticity associated with facility disruptions (i.e., the exponential number of the total 

potential facility disruption scenarios ( J )RO ) adds a huge layer of complexity. Even if the 

optimal facility location design and the customer-to-facility assignment are given, it is still 

difficult to evaluate the total expected en-route travel and in-facility waiting costs. In other 

words, each of the exponential number of possible disruption scenarios involves a network 

assignment problem with a different set of highly-nonlinear cost components. In the next section, 

we propose an approximation model that can yield tight lower and upper bounds to the original 

problem (8). This new model can be solved efficiently to near-optimum with acceptable 

optimality gaps. 

 

2.3 Model Approximation  
2.3.1 Lower Bound (LB) Formulation 

Recall that the in-facility waiting cost in each scenario, 

J 0 0

( ) 2 j js s s
j j

j

m m
W

β
λ λ

µ µ∈

 
= ⋅ +  

 
∑λ

, is a concave function of 
sλ , and the expected total in-

facility delay cost across all possible scenarios is: 

J S 0 0

[ ( )] 2 j js s s s
j j

j s

m m
E W P

β
λ λ

µ µ∈ ∈

 
= ⋅ +  

 
∑∑λ

. 
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The concave function 0 0

J,2 , Sj js s
j j j s

m mβ
λ λ

µ µ
∀ ∈+ ∈⋅

 can be bounded from below by 

a linear function in the range of 0 and the upper bound of 
s
jλ  (denote as 

,s up
jλ ), i.e., 

0 0

,[02 , , ]j js s s s
j j j j j j

s up
j

m m
a b

β
λ λ λ λ

µ µ
λ∈+ ≤ ⋅ + ∀

, where ja  and jb  are parameters to be 

calibrated. Now we obtain a lower bound of [ ( )]sE W λ  with appropriately chosen { }ja  and 

{ }jb :  

,

J S J S
[[ ( )] ( ) , 0, ]λ s s s s s s

j j j j j j j
j s j s

s up
jE W P a b a b Pλ λ λ λ

∈ ∈ ∈ ∈

 ≥ ⋅ + = + 
 

∀ ∈∑∑ ∑ ∑
. 

 

Along the secant line, it can be found that when
s
jλ equals 0, which means no customer 

gathered in facility j in scenario s and thus no in-facility congestion, then parameter 0ja = ; 

while if only facility j is functioning in a certain scenario, the maximal possible number of 

customers gathered in facility j is 
,

I

s up
j i

i
λ ω

∈

= ∑
. Thus, by setting 

0

, , ,

0

2s up s up s up
j j

j j
j j j

m m
a b λ

β
µ µ

λ λ+ = ⋅ +
, we can obtain the value of parameter jb , i.e., 

0 0
I

2 j j
j

i
i

m m
b

β
µ ω µ

∈

= +
∑

. 

Recall that in any scenario, customer group i always checks the availability of built 

facilities in its pre-assignment list until the first functioning facility is selected or the demand is 

lost and suffers a penalty cost when there is no functioning facility. Therefore, the following 

equation holds: 

1

I S I 1
[ ] (1 )

R
s s s r
j i ij i ijr

i s i r
E P x q q xλ ω ω −

∈ ∈ ∈ =

= = −∑∑ ∑∑
. 
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According to inequality (12), [ ( )]sE W λ  can be bounded from below as follows 

1

J I 1 0 0
I

[ ( )] 2 (1 )
R

j js r
i ijr

j i r i
i

m m
E W q q x

β
ω

µ ω µ
−

∈ ∈ =
∈

 
 ≥ + − 
 
 

∑∑∑ ∑
λ

. 

 

On the other hand, the travel cost in each scenario s, A
( ) ( )s s s

a a a
a

T z t zα
∈

= ∑z
 is a convex function 

of link flow
sz . According to Jensen's Inequality, the total expected travel cost always satisfies 

A S A S
( )s s s s

a a
a s a s

P T z T P zα α
∈ ∈ ∈ ∈

 ≥  
 

∑∑ ∑ ∑
. 

As such, we arrive at the following model which can be shown to be a lower bound of 

original model (8),  

1
1 1

, J 1,, , , , J A J I 1 I 10 0
I

Min ( ) 2 (1 )
R R

j j r r
j j a a a i ijr i i r

j a j i r i ri
i

m m
d y z t z q q x q x

β
α ω ωη

µ ω µ

+
− −

+′ ′
∈ ∈ ∈ ∈ = ∈ =

∈

 
 + + + − + 
 
 

∑ ∑ ∑∑∑ ∑∑∑x y z f k

 

Subject to   8(d)-8(f), and  

( )0 4

0 0

1 0.15( ) ,
( )

1.75 0.6 ( ),
a a a a a

a a

a a a a a a

t z C z C
t z

t t C z z C

 + ≤= 
− >  

 

,

I J
Ai j

a a
i j

z f a
∈ ∈

= ∀ ∈∑∑
 

 

1
,

1
(1 ) I, J

R
r

i j i ijr
r

k q q x i jω −

=

= − ∀ ∈ ∈∑
 

 

,
, ,

,

, I
0, N\(I J)

, Jn n

i j
i j i j

a a
a A a A

i j

k n
f f n

k n
+ −∈ ∈

 ∀ ∈
− = ∀ ∈
− ∀ ∈

∑ ∑ 
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{ }, 0,1 I,1 J 1,1 1j ijry x i j r R= ∀ ∈ ≤ ≤ + ≤ ≤ +   

,
, 0 A I, , , , Ji j

a i j a a iz jk f ≥ ∀ ∈ ∈ ∈   

Especially, constraints (13d) ensure that flow assigned for each OD pair (i, j) is equal to 

the expected flow from origin Ii ∈  to destination Jj ∈  across all assignment levels. The other 

constraints have similar explanations as those of model (8) but not limited to a certain scenario. 

The following proposition shows the optimal solution of model (13) indeed yields a lower bound 

for model (8). 

 
Proposition 1. The optimal objective function of model (8) is always bounded from below by that 
of model (13).  

Proof. Since we have already shown that for any feasible solution, the objective of (13) is smaller 

than that of (8), we only need to prove that the optimal solutions of original model (8) yields a 

feasible solution to model (13) with a smaller or equal objective value. Let 

{ }* * * * * *, , , , ,s s s sx x y z f k
 be the optimal solution of original model (8), then based on the definition 

of *x , each customer group corresponds to a facility visiting sequence, which means *x  and 
*y  

can be transformed into a feasible solution of (13) denoted as *′ =x x  and 
*′ =y y , respectively. 

Clearly, ′x  and ′y  satisfy constraints (8d), (8e), and (8f), and (13f) always hold for these values. 

In addition, since in any scenario Ss ∈ , the constraints (13b), (13c), (13e) and (13g) hold for the 

optimal 
*sz ,

*sf , and *sk , thus the expected values 
*

S

s s
a a

s
z P z

∈

= ∑
, 

, , , *

S

i j s i j s
a a

s
f P f

∈

= ∑
, 

and
*

, ,
S

s s
i j i j

s
k P k

∈

= ∑
, also satisfy these constraints as well as constraints (13d). This implies that 

we can transform the optimal solution of original model (8) into a feasible solution of model 

(13), with a lower objective value which embodies in the deviation of total expected en-route 

travel cost and in-facility waiting cost above. This completes the proof. □ 
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2.3.2 Upper Bound (UB) Formulation 

For the in-facility delay cost formula, since I 0

4
0j s

i ij
i

m
x

β
ω

µ∈

≥∑
, according to the basic 

inequality 

21 , 0
2

χχ χ+ ≤ ≥ 
  , it is easy to obtain the inequality 

 

1 1
2 2

min

I I0 0 min

4 4 1 1
2 2

j js si
i ij ij

i i

m m
x x

β β ω ωω
µ µ ω∈ ∈

     
≤ ⋅ +     

    
∑ ∑

,  

where 
{ }min I

min ii
ω ω

∈
=

. As such, the in-facility delay cost can be bounded from above as follows, 

1 1
2 2

min

J S I I I J S J0 0 0 min 0 0

4 j j j j js s s s s
i ij i ij i ij

j s i i i j s j

m m m m m
P x x P x

β β β ω
ω ω ω

µ µ µ ω µ µ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

       + ≤ + +           
∑∑ ∑ ∑ ∑∑∑ ∑

 

  

The following inequality also holds for the expected total travel cost, 

( )

0

A S0 0
0 0

A S A S
A S

1.15 ,
( ) 1.75 ,

1.75 0.6 ,

s s s
a a a a

a ss s s s s
a a a a as s s

a s a sa a a a a a
a s

P z t z C
P z t z P z t

P z t t C z C

α
α α

α
∈ ∈

∈ ∈ ∈ ∈

∈ ∈

 ≤
≤ ≤

− >


∑∑
∑∑ ∑∑

∑∑
 

 

Using (14), (15) and (11) to replace their counterparts in the original model, we have the 

following,  

1
2

min0 1

, , , , J A I J 1 J0 min 0 0

1
1

, J 1,
I 1

Min 1.75 (1 )
R

j j jr
j j a a i ijr

j a i j r j

R
r

i i r
i r

m m m
d y z t q q x

q x

β β ω
ω

µ ω µ µ

ωη

−

′ ′
∈ ∈ ∈ ∈ = ∈

+
−

+
∈ =

   
+ + + − +       

+

∑ ∑ ∑∑∑ ∑

∑∑

x y z f k

. 

 

Subject to (8d) - (8f), and (13b) - (13g). 
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The optimal solution to model (16) yields an upper bound to that of model (8), as stated 

below. 

 

Proposition 2. The optimal objective of model (16) is an upper bound to that of model (8). 

Proof. In order to demonstrate that the original scenario-based formulation can be bounded by 

model (16), it is sufficient to show that the optimal solution of model (16) yields a feasible 

solution to model (8). Let { }* * * * *, , , ,′ ′x y z f k
 be the optimal solution of UB model (16). As we 

know, { }I, J, 1,...,ijrx i j r R′ = ∈ ∈ =x
 provide ordered service allocation decisions for customer 

groups, through constraints (8d), (8e), (8f), and (13f), they guarantee there is a unique visiting 

strategy for each customer group in case possible facility disruption happens. Based on the 

optimal facility locations 
*′y  and facility binary functioning indicator 

s
jδ  in each scenario, we 

can get 
*′=y y and decompose ′x  to a series of scenario-based service allocation variables 

1

1
(1 ) , I, J, S

R
r

i
s s s
ij ij jr

s r
x P qx i j sq x−

=

= −
 

= ∀ ∈ ∈ ∈ 
 

∑ ∑sx
 for all possible disruption scenarios.  Let  

{ }, , ,i j r
af a∀ denote the portion of optimal link flow

( ){ }*, ,i j
af a∀

, which is originated from the 

demand ( ) ( )*
1 r

i ijrq q xω ′−
 and could be zero if j is not customer i’s rth choice. Clearly, 

{ }, , ,i j r
af a∀  satisfy constraints (13e) with ( ) ( ) ( )* *

, 1 r
i j i ijrk q q xω ′= −

. In addition, in each 

scenario Ss ∈ , for each customer Ii ∈ , suppose Js
ij ∈  is i’s assigned facility in this scenario and 

ranks r̂  of the visiting sequence, then { }, ,i j s
af  can be defined as follows: 

( )
( ) ( )

ˆ
ˆ

ˆ ˆ

, ,*, ,
,

ˆ
, , if  I, S, A

1
1

0, othe w e

,

r is

i j r
s i j r sa
j a ijr iri j s

a r

ff x j j i s a
q qf

q q
δ ′ = ∀ ∈ ∀ ∈ ∀ ∈ −= = − 

  

which clearly satisfies (8c). Now we have 
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( )
( )

( )
( )

( ) ( )

* *, ,, ,
, ,

S S I J S I J I J

ˆ
ˆ

S

* *, , ,

I J I J

ˆ
ˆ ˆ

ˆ
ˆ

1 1

, A

ii j rs i j r s
j a ijr j a ijrs s s i j s s s

a a r r
s s i j s i j i j s

i j r i j
a ijr a a

i j i j

f x f x
P z P f P P

q q q q

f x f z a

δ δ

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

′ ′
= = =

− −

′ ′= = = ∀ ∈

∑ ∑∑∑ ∑∑∑ ∑∑∑

∑∑ ∑∑
 

From the above construction, we will have a set of feasible solution { }s
az , 

{ }, ,i j s
af and{ },

s
i jk for the original model (8), which has a lower objective value than the optimal 

value of model (16). □ 

 
2.3.3 Approximation Model (AM) Formulation 

Based on the derivation of lower and upper bounds above, now we propose an 

approximate MINLP model that is much more computationally tractable. The expected in-

facility delay cost and travel cost are approximated by using the expected values of arrival rate in 

facilities and traffic flow. For example, considering the expected arrival rate 

1

I 1
(1 )

R
r

j i ijr
i r

q q xλ ω −

∈ =

= −∑∑
, the approximated total in-facility delay cost  per unit time can be 

shown as follows 

J 0 0

( ) (2 )j j
j j

j

m m
W

β
λ λ

µ µ∈

= ⋅ +∑λ
. 

 

Similarly, the total travel cost can be approximated by plugging in the expected flow z  

which is linearly dependent on λ . Therefore, the following mixed integer non-linear program is 

presented to approximate the true value of total expected system cost (8). The following 

proposition will show that the optimal value of model (17) is always within the range of the 

lower bound from (13) and upper bound from (16). In later sections, we will show numerically 

that (17) provides near optimal solutions, and is much easier to solve for large scale problems. 
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1
2

1 1

, , , , J A J I 1 I 10 0

1
1

, J 1,
I 1

4
Min ( ) (1 ) (1 )

R R
j jr r

j j a a a i ijr i ijr
j a j i r i r

R
r

i i r
i r

m m
d y z t z q q x q q x

q x

β
α ω ω

µ µ

ωη

− −

∈ ∈ ∈ ∈ = ∈ =

+
−

+
∈ =

   + + − + − 
   

+

∑ ∑ ∑ ∑∑ ∑∑

∑∑

x y z f k

 
(10)  

Subject to (8d) - (8f), and (13b) - (13g). 
 

Proposition 3. The optimal objective of AM model (18) is bounded from below by that of model 
(13), and from above by that of model (16). 

Proof. The AM model has the similar structure with LB model (13) and UB model (16). In order 

to prove the optimal value of model (18) is smaller than (16) and greater than (13), according to 

the composition of objective functions of (13), (16) and (18), the key point is to demonstrate the 

establishment of following inequalities, (i) the cost term 

1
2

1 1

J I 1 J I 10 0
I

4
(1 ) 2 (1 )

R R
j jr r

i ijr i ijr
j i r j i r i

i

m m
q q x q q x

β β
ω ω

µ µ ω
− −

∈ ∈ = ∈ ∈ =
∈

 
− ≥ − 

 
∑ ∑∑ ∑∑∑ ∑  

(11)  

and (ii) 

1 1
2 2

min1 1

J I 1 J I J 10 0 0 min

4
(1 ) (1 )

R R
j j jr r

i ijr i ijr
j i r j i j r

m m m
q q x q q x

β β ω β
ω ω

µ µ µ ω
− −

∈ ∈ = ∈ ∈ ∈ =

   
− ≤ + −   

   
∑ ∑∑ ∑ ∑∑∑

 
 

For inequality (19), when decomposing both sides by j and remove the constant terms 0

2 jmβ
µ , 

we can obtain

1
2 1

1

I 1 I 1

I

(1 )
(1 )

rR R
i ijrr

i ijr
i r i r i

i

q q x
q q x

ω
ω

ω

−
−

∈ = ∈ =

∈

− − ≥ 
 
∑∑ ∑∑

∑
.  

Since 

1

I I 1
(1 )

R
r

i i ijr
i i r

q q xω ω −

∈ ∈ =

≥ −∑ ∑∑
always hold when 0 1q≤ < , the inequality (19) holds.  

In the other side, we conduct the same decomposition for (20) by j and remove the constant 

term 0

jmβ
µ  for both sides, inequality (20) becomes 
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1
2

1 1
min

I 1 I 1min

14 (1 ) (1 )
R R

r r
i ijr i ijr

i r i r
q q x q q xω ω ω

ω
− −

∈ = ∈ =

 − ≤ + − 
 
∑∑ ∑∑

.  

Obviously it always holds, and it leads to the establishment of inequality (20). □ 

 

2.4 Solution Approach 

2.4.1 Lagrangian relaxation 

To solve the LB model (13), UB model (16)  and integrated AM model (18), we propose a 

customized Lagrangian relaxation algorithm to find near-optimum solutions. Due to the similar 

model structure, we only introduce the LR-based algorithm design for the integrated AM model 

which immediately applies to all other models. We relax constraints (13d) with a set of 

nonnegative multipliers { }Rijφ= ∈φ  and add them to objective (18), and the relaxed problem 

becomes: 

1
2

1 1

, , , , J J I 1 I 10 0

1
1 1

,, J 1,
A I 1 I J 1

4
( ) := min (1 ) (1 )

( ) (1 )

R R
j jr r

j j i ijr i ijr
j j i r i r

R R
r r

a a a i ij i ijr i ji r
a i r i j r

m m
d y q q x q q x

z t z q x q q x k

β
ω ω

µ µ

α ωη φ ω

− −

∈ ∈ ∈ = ∈ =

+
− −

+
∈ ∈ = ∈ ∈ =

   Φ + − + − 
   

 + + + − − 
 

∑ ∑ ∑∑ ∑∑

∑ ∑∑ ∑∑ ∑

x y z f k
φ

 

Subject to (8d) - (8f), and (13b), (13c), (13e)-(13g). 

For any given φ , ( )Φ φ is a lower bound of approximation model (18). Note that the 

relaxed problem (21) can be further decomposed into two sub-problems. 

 
Sub-problem 1: (traffic assignment) 

( )0 4
,, , A I J

Min 1 0.15( )a a a a ij i j
a i j

z t z C kα φ
∈ ∈ ∈

+ −∑ ∑∑z f k
 

(12)  

Subject to  (13b), (13c), (13e) and (13g).    
 

Sub-problem 2: (facility location and service allocation) 
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1
2

1 1

, J J I 1 I 10 0

1
1

, J 1,
I 1

4
Min (1 ) ( ) (1 )

R R
j jr r

j j i ijr ij i ijr
j j i r i r

R
r

i i r
i r

m m
d y q q x q q x

q x

β
ω φ ω

µ µ

ωη

− −

∈ ∈ ∈ = ∈ =

+
−

+
∈ =

   + − + + − 
   

+

∑ ∑ ∑∑ ∑∑

∑∑

x y

 
(13)  

Subject to (8d) - (8f) and (13f). 
 

Note that both LB and UB models are mixed integer linear programs, so the resulting 

decomposed sub-problems for these two models can be solved by existing solvers. However, 

Sub-problem 1 is a convex optimization problem, which can be easily solved by commercial 

solvers. Sub-problem 2 contains only binary variables, but it is very difficult to solve because of 

the square root term in the objective function. In the next subsection, we manage to reformulate 

it into an equivalent conic quadratic MIP that is solvable. 

 
2.4.2 Conic quadratic MIP reformulation of sub-problem 2 

To solve the type of mixed integer programs with square root terms in the objective e.g., 

problem (23), an LR based polynomial-time exact algorithm was developed by Chen et al. 

(2011). In this project, we adopt a conic quadratic MIP reformulation in Atamtürk et al. (2012), 

by which means Sub-problem 2 can be solved by commercial solvers (e.g., CPLEX). 

We introduce an auxiliary variables { } |J|
jh R= ∈h  to represent the square root terms in the 

objective of (23), i.e., 
1

1
2

I 1
(1 )

R
r

i ijr
i r

j qh q xω −

∈ =

 =  − 
 
∑∑

, Jj∀ ∈  and based on the fact that 
2

ijr ijrx x=  for 

any binary variable ijrx , we reformulate (23) as  

1
2 1 1

, J 1,, , J I 1 I 10 0

Min 2 (1 )
R R

j j r r
j j j j ij i ijr i i r

j i r i r

m m
d y h h q q x q x

β
φ ω ωη

µ µ

+
− −

+
∈ ∈ = ∈ =

 
+ + + − + 

  
∑ ∑∑ ∑∑x y h

 (14a)  

Subject to 
1 2 2

I 1
(1 ) J

R
r

i ijr j
i r

q q x h jω −

∈ =

− ≤ ∀ ∈∑∑  (14b)  

0 Jjh j≥ ∀ ∈  (14c)  
(8d) - (8g) and (13f).                                                           
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Now the objective function (24a) is quadratic, and the constraints are conic or linear, so 

the problem can be solved directly by existing solvers such as CPLEX. 

 
2.4.3 Algorithm framework and feasible solutions 

Solutions to the relaxed sub-problems can be used to generate feasible solutions to (16) 

which provide upper bounds to the optimal objective values of AM model (18). The general 

algorithm framework for the AM model is as follows and similar procedure applies to the LB 

and UB models.. 

Step 1: Initialize 0φ , 0n = . 
Step 2: In iteration n, solve Sub-problem 1 (e.g., by NLP solvers) and Sub-problem 2 (e.g., by 

CPLEX) under nφ  and obtain the corresponding solutions 1( , )subx y and 2( , , )subz f k . 
Step 3: Find feasible solutions to the original problem and update upper bound (Û ). 
 Step 3.1: Fix the values of location decision variables y and allocation decision variables 

x from the relaxed problem, and solve the rest variables in problem (18); i.e., set  
1( , ) ( , )sub=x y x y in the original problem and solve for ( , , )z f k . 

 Step 3.2: Fix the values of continuous variables from Sub-problem 2, i.e., set 
2( , , ) ( , , )sub=z f k z f k , for Ii∀ ∈ , sort { },i jk in a descending order and let irl record the 

corresponding rth assigned facility index for customer group i. Set 

1, if , 1, 2, , ,
0, otherwise

I,
.

r
jr

i
i

i r
x

j l R= = …∀ ∈ ∀
= 


, and 1I

1, if 0, J

0, otherwise.

R

ijr
rj i

x
y

j
=∈

> ∀ ∈
= 


∑∑ . Then, 

solve the problem (18) by fixing ( , )x y  to obtain feasible values ( , , )z f k .  
 Step 3.3: Compare the feasible solutions obtained from Step 3.1 and Step 3.2 with the 

current best feasible solutions, and update the best upper bound if a better solution is 
found. 

Step 4: Compare the solution of the relaxed problem with the best lower bound ( L̂ ), and update 
the lower bound if a larger bound is found. Terminate the algorithm if the optimality gap 
is smaller than a specified tolerance or the computation time exceeds the limit, otherwise 
update the multipliers 1n+φ  (see section 4.4) and set 1n n= + , and go to step 2. 

 
2.4.4 Multiplier updates 

Through the framework of LR algorithm, dual multipliers φ  can be updated iteratively to 

find the best lower bound and search for the optimal value of problem (18). Initial values of 

multipliers are set as { }0 0 0ijφ φ= = . Then in iteration n, the multiplier can be updated by 

applying the conventional sub-gradient method (Fisher, 1981) for I, Ji j∀ ∈ ∈ as follows: 
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1 1
,

1
( (1 ) )

R
n n n r
ij ij i j i ijr

r
k q q xφ φ j ω+ −

=

= + − −∑
. 

 

The step size 
1nj +
 in the nth iteration can be updated as 

1

1 2
,

I J 1

ˆ( ( ))

( (1 ) )

n
n

R
r

i j i ijr
i j r

U

k q q x

τj
ω

+

−

∈ ∈ =

− Φ
=

− −∑∑ ∑
φ

, 

 

where Û is the current best upper bound. If Û does not improve in K predefined consecutive 

iterations, we set  

1

1 2
,

I J 1

*abs( ( ))*0.4

( (1 ) )

n
n

R
r

i j i ijr
i j r

k q q x

τj
ω

+

−

∈ ∈ =

Φ
=

− −∑∑ ∑
φ , 

(15)  

where nτ is a step size parameter. If the lower bound does not improve in K predefined 

consecutive iterations, we set
0

0.5
n

n
ττ = . 

 

2.5 Numerical Example 

In this section, a set of numerical experiments are conducted under different parameter 

settings to measure the gaps between the upper and lower bounds of the scenario-based reliable 

service facility location model. The computational efficiency of the proposed LR based solution 

algorithm is also tested through these experiments to numerically illustrate the accuracy of the 

proposed approximation model compared to the original scenario-based model. Besides, the 

approximation model with and without considering in-facility delay are compared to show the 

effect of in-facility congestion on facility location design and the total system cost. Insights are 

drawn from a series of sensitivity analyses with regard to a range of key parameters values. The 

proposed models and algorithm are coded in GAMS scripts, and run on a personal computer with 

2.67 GHz CPU and 4 GB of RAM. We use off-the-shelf solvers KNITRO and CPLEX as 

benchmark solution methods, and use them to solve the LR sub-problems (or their 

reformulations). 
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2.5.1 Computational experiments 

The proposed LB model, UB model and AM model are applied first to the Sioux-Falls 

network (Bar-Gera, 2009), as shown in Figure 1(a). In this example, candidate facility nodes are 

shown by dark shades and others are customer demand nodes. The majority of parameter values 

are taken or derived from Castillo et al. (2009), Bai et al. (2011) and An et al. (2013). The hourly 

demand rate at each demand node ( iω ) is generated randomly in uniform distribution between 

[1800, 3000]; the prorated hourly fixed cost of per server at candidate locations ( jm ) is randomly 

drawn from interval [20, 50]; the unit penalty cost for each customer, η  = $10000; and a series 

of sensitivity analyses are conducted for parameters shown in Table 1, including the unit value of 

travel time α , unit value of in-facility waiting time β , average service rate 0µ , service 

disruption probability q, and prorated hourly facility setup investment jd . The following 

parameter values related to the LR algorithm are used in all experiments. The initial values of 

Lagrangian multipliers and step size parameter are 
0 0, I, Jij i jφ ∀ ∈ ∈=  and 

0τ  = 2; the 

maximum iteration numbers for all runs is 100; the optimal gap tolerance is 0.1%; and the 

computation time limits for all sub-problems for the LR procedure and directly using the solver 

are 3000s and 6000s respectively, and the allowed number of consecutive iterations when Û  

does not improve is K=3. 
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(A)                                                                             (B) 

Figure 1 (A) The Sioux-Falls network. (B) 17-node hypothetical network. 

 

Table 1 presents the computational results for a range of problem instances for the Sioux-

Falls network. It can be observed that the gaps between lower bounds and upper bounds are 

mostly less than 10%, indicating that the difference between the proposed approximation model 

and the original scenario-based reliable facility location model should be very small. Also, in 

most tested parameter settings (only except for case (a) and (e)), the total number of optimal 

facilities and their locations from the UB, AM and LB models are precisely the same, which 

means that our proposed approximation model indeed provides good estimations of the true 

optimal reliable service facility location design. 

 

 
 
 

Table 1. Comparison of UB, LB and AM models 

Case α 
($/h) 

β 
($/h) 

q 
(%) 

µ0 
(cus./h) 

jd  
($/h) Model CPU 

time 
Optimality 

gap  
Total 
num. 

Optimal 
 locations 

Total 
cost 

(×105 $) 

Gap 
between 
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(s) (%) UB and 
LB (%) 

(a) 1 15 5 12 20000 
UB 1531 0.2 4 6,12,15,19 1.79 

7.8 AM 3611 0.09 4 1,6,12,15, 1.66 
LB 1415 0.2 4 6,12,15, 24 1.65 

(b) 1 15 5 120 5000 
UB 2052 1.0 5 6,10,12,15,19 0.52 

17.7 AM 3604 0.3 5 6,10,12,15,19 0.44 
LB 1618 0.3 5 6,10,12,15,19 0.43 

(c) 1 15 5 120 20000 
UB 1338 0.5 4 6,12,15,19 1.24 

8.1 AM 4312 0.09 4 6,12,15,19 1.15 
LB 648 0.09 4 6,12,15,19 1.14 

(d) 1 5 5 120 20000 
UB 1745 0.5 4 6,12,15,19 1.23 

7.5 AM 756 0.07 4 6,12,15,19 1.14 
LB 803 0.07 4 6,12,15,19 1.14 

(e) 1 15 10 12 20000 

UB 1606 0.2 6 1,4,6,12, 
15,24 2.05 

6.8 AM 1437 0.2 6 1,6,12, 
15,19,20 1.92 

LB 1626 0.2 6 1,6,12, 
15,19,20 1.91 

(f) 1 15 10 120 20000 

UB 1525 0.3 6 6,10,12, 
15,19,24 1.49 

6.1 AM 4247 0.1 6 6,10,12 
15,19,24 1.41 

LB 1576 0.1 6 6,10,12 
15,19,24 1.40 

 

We also apply the proposed approximation model to both a 17-node hypothetical network 

from Hajibabai et al. (2013), as shown in Fig. 1(b) and the Sioux-Falls network to further test the 

impact of in-facility congestion on facility location design and the computational performance of 

the proposed LR based solution algorithm with α =10 $/h, β =15 $/h, 0µ =12 customers/h, 

q =0.05, and jd =5000 $/h. For each network, we consider two optimization objectives (with or 

without considering in-facility delay) and two solution methods (solver KNITRO or LR based 

algorithm). The total system costs of all solutions are evaluated using the approximated total cost 

formula (i.e., the objective function (18)). The computational results are summarized in Table 2. 

For all of the test cases, the LR based algorithm efficiently converges to near-optimum solutions 

with a reasonably small gap (i.e., less than 1.5%). In contrast, the solver finds optimal solutions 
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only for the case of the 17-node network without considering in-facility delay, which takes much 

longer CPU time than the LR algorithm; the solver fails to find any feasible solutions for all 

other cases within 6000 second time limit and 1% gap tolerance. As such, the proposed LR based 

algorithm not only improves computational efficiency by providing near-optimum solutions 

within a shorter computation time, but also can be applied to relatively large-scale instances. 

 
Table 2. Comparison of solver KNITRO and LR based algorithm on two objectives 

Solution 
Approach Network Cases 

CPU 
time 
(s) 

Gap 
(%) 

Total 
num. 

Optimal 
locations 

Cost components (%) Total 
cost 

(×105 $) 
Travel 
cost 

Waiting 
cost 

Service 
cost 

Setup 
cost 

Penalty 
cost 

Solver 
KNITRO 

17-node 
network 

Considering  
in-facility  

delay 
6000 - - - - - - - - - 

No in-
facility delay 397 - 5 3,6,8, 

9,10 53..5 1.94 29.68 14.62 0.27 1.71 

Sioux-
Falls 

network 

Considering  
in-facility  

delay 
6000 - - - - - - - - - 

No in-
facility delay 6000 - - - - - - - - - 

LR based 
Algorithm 

17-node 
network 

Considering  
in-facility  

delay 
986 0.6 5 3,6,8, 

9,10 54.68 1.9 28.35 14.9 0.28 1.69 

No in-
facility delay 797 0.9 5 3,6,8, 

9,10 53.58 1.92 29.6 14.62 0.27 1.71 

Sioux-
Falls 

network 

Considering  
in-facility 

delay 
1565 0.6 5 6,10,12, 

15,19 53.19 2.19 32.02 12.2 0.41 2.05 

No in-
facility delay 1774 1.2 5 4,6,10, 

15,24 46.31 2.34 39.53 11.44 0.38 2.19 

 

We can also see that failure to consider in-facility delay leads to different facility location 

designs in the Sioux Falls network and higher total system cost. When the objective aims only at 

minimizing the travel cost and facility setup cost, i.e., without considering in-facility delay, more 

dispersedly distributed service facilities may be selected (e.g., the spatial distribution of 4, 6, 10, 

15, 24 is more scattered than that of 6, 10, 12, 15, 19 when considering in-facility delay in 

optimal facility location design). In this case, travel cost is more dominant so customers are 

assigned to more decentralized facilities to reduce customers’ average travel distance and 
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mitigate traffic congestion. On the other hand, the in-facility waiting and service costs and thus 

the total system cost may increase greatly. This observation implies that ignoring the in-facility 

delay in service facility location design may result in a quite suboptimal location deployment as 

well as erroneous system cost estimations. The in-facility waiting and service costs increases 

with more decentralized facilities due to a “risk pooling effect”, and we will explain in more 

details in the next section. 

 
2.5.2 Sensitivity analysis with AM model on the Sioux-Falls network 

Numerical experiments in the previous section implies that the values of average service 

rate 0µ , prorated facility setup investment jd , service disruption probability q, and time value 

α  and β have major impacts on the optimal solutions. We extract more results from sensitivity 

analyses with the Sioux-Falls network to provide more insights of these parameters. A total of 18 

cases of the AM model are solved by the LR based algorithm: 3 levels of prorated hourly facility 

setup investment jd  = {$2000, $5000, $20000}, Jj∀ ∈ , 2 levels of average service rate 0µ  = 

{12, 120} customers/hour, 4 levels of service disruption probability q = {0, 0.05, 0.1, 0.3}, and 2 

different /α β  ratios {10/15, 15/10}. Table 3 summarizes the results. 

 
 
 
 

Table 3. Sensitivity analysis on the Sioux-Falls network 

Case α 
($/h) 

β 
($/h) 

q 
(%) 

µ0 
(cus.
/h) 

dj 
($/h) 

CPU 
time 
(s) 

Gap  
(%) 

Total  
num. 

Optimal 
locations 

Cost components (%) Total 
cost 

(×105 

$) 
Travel 
cost 

Waiting 
cost 

Service 
cost 

Setup 
cost 

Penalty  
cost 

1 10 15 5 12 2000 1910 0.7 6 6,10,12,15,
19,24 56.37 1.27 35.86 6.48 0.02 1.85 

2 10 15 5 12 5000 4565 0.7 5 6,10,12, 
15,19 53.20 2.19 32.02 12.18 0.41 2.05 

3 10 15 5 12 20000 1894 0.3 4 6,12,15, 
19 41.90 0.67 22.04 29.28 6.11 2.73 

4 10 15 5 120 2000 2352 0.8 7 4,6,10,12,1
5,19,24 79.25 1.33 7.78 11.64 0.00 1.20 

5 10 15 5 120 5000 2513 1.5 5 4,6,10, 
15,24 73.11 1.17 7.05 18.07 0.60 1.38 

6 10 15 5 120 20000 1467 1 4 4,6,10,15 50.14 0.30 4.00 37.68 7.86 2.12 
7 15 10 5 12 20000 1664 0.7 5 6,10,12, 48.38 0.53 19.63 30.05 0.25 3.33 
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15,19 

8 15 10 5 120 20000 1774 0.8 5 4,6,10, 
15,24 57.64 0.50 3.58 37.96 0.32 2.63 

9 10 15 0 12 5000 2198 0.2 3 6,12,15 60.50 1.73 30.15 7.62 0.00 1.97 

10 10 15 10 12 20000 1808 0.1 6 6,10,12, 
15,19,24 35.14 1.66 22.71 39.61 0.88 3.03 

11 10 15 20 12 20000 12274 0.8 8 1,4,6,10,12
,15,19,24 31.06 0.77 19.85 46.34 1.98 3.45 

12 10 15 0 120 5000 2473 2.4 4 4,6,10,15 77.72 0.93 6.74 14.60 0.00 1.37 

13 10 15 10 120 20000 1721 0.8 6 4,6,10, 
12,15,19 42.58 0.75 4.08 51.45 1.15 2.33 

 

We see that most cases are solved to near optimality (less than 1% gap) in less than an 

hour. In the first 6 cases, as jd  increases, fewer service facilities are built, which saves facility 

setup cost but also results in longer travel time and severer traffic congestion. An interesting 

finding is that deploying fewer service facilities is sometimes beneficial in terms of decreasing 

the total in-facility waiting and service cost. This is consistent with the well-known “resource 

pooling effect” for general queuing systems, as stated in Theorem 1 of Benjaafar (1995). 

The “resource pooling effect” also subverts our intuition when the average service rate 

becomes very small. For example, when 0µ  changes from 120 (i.e., serving 2 customers per 

minute) to 12 (i.e., serving 0.2 customers per minute), it is intuitive to select more facilities to 

leverage customer’s seemingly increased waiting time, however, the system tends to select fewer 

facilities (with higher service capacity in each), e.g., by comparing cases 1 and 4, or facility 

locations tend to be much closer, e.g., by comparing cases 2 and 5, 3 and 6. Although this 

arrangement may slightly increase the customers’ travel cost, due to the pooling effect, 

customers suffer less waiting due to more pooled servers (as evidenced by the decrease of 

average waiting and service time in the facilities). 

We find that the service disruption probability also has a significant impact on the system 

design. For example, by comparing cases 9 and 2, 3, 10 and 11, 12 and 5, 6 and 13, we find that 

the total service facility number greatly increases with q, suggesting that more facilities are 

needed to provide sufficient back-up options when facilities become less reliable. The increase of 

q also leads to the lower of total expected number of customers gathered in each service facility 

and this mainly accounts for the rise of customer waiting and service costs due to the risk 

pooling effect. As every customer has a greater probability to resort to backup service facilities 
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or lose service, the expected customer travel cost and system penalty cost both increase. The 

sharp increase of penalty cost is also highlighting a real concern over significant loss of life and 

property in extreme disaster events that lead to high disruption probability. 

To study the impact of en-route travel and in-facility waiting delay, we vary the weights 

of travel and waiting costs, i.e., α  and β . Through comparing cases 3 and 7, 6 and 8, we observe 

that the optimal number of service facilities is greater when travel cost has larger weights (e.g., 

cases 7 and 8). This indicates that when en-route traveling is dominating, more facilities shall be 

deployed to reduce the average customer travel distance. On the other hand, when in-facility 

waiting is dominating (e.g., cases 3 and 6), customer demand tends to be pooled to fewer 

facilities to reduce average waiting and service time (as well as the total number of servers). 

Figure 2 shows the optimal facility deployments, the corresponding server numbers and 

level-1 customer assignments for six cases. We consider (I) case 3 in Table 2 as the benchmark; 

(II) case 1, to show the impact of prorated facility setup investment jd ; (III) case 6, to show the 

impact of average service rate 0µ in the system; (IV) case 7, to show the impact of different 

/α β  ratios; (V) case 11, to show the impact of service disruption probability; and (VI) without 

considering in-facility delay.  

We see that in each scenario the total number of servers is around 2250 across all 

facilities when 0µ =12 customers/hour. This number seems a little large, which mainly results 

from (i) the demand rate in each customer group is large; and (ii) the in-facility waiting cost is 

reduced at the expense of providing more servers (as stated in the derivation of the optimal 

service rate jµ ).  

In Figure 2, the benchmark scenario (I) has four facilities built at nodes 6, 12, 15 and 19. 

With the optimal level-1 customer assignments and server arrangements, the average waiting and 

service time in each service facility is around 16.4s, the unit service cost is around $26.2, and the 

total server number is 2294. When in-facility delay is not considered in the objective, e.g., as in 

scenario (VI), there is a 13.3% increase in the average waiting and service time and 39.6% in the 

average service cost in each service facility as compared with scenario (I) due to the more 

scattered distribution of optimal facility locations, which also roughly explains the rise of total 
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expected system cost in the facility location design, even though the total travel cost drops by 

7.61%. When en-route travel has a larger weight, e.g., as in scenario (IV), and when service 

facilities become less reliable, e.g. q changing from 0.05 to 0.2 as in scenario (V), the resource 

pooling effect dominantly accounts for a similar rising trend of average waiting and service time 

and unit service cost.  

Decreasing the prorated facility setup cost jd as in scenario (II) and increasing the 

average service rate 0µ as in scenario (III) are both beneficial to lower the total expected system 

cost, however, if putting emphasis on reducing the en-route travel, in-facility waiting and penalty 

for potentially losing service related costs, the latter is undoubtedly a better measure as 

evidenced by the sharp decrease of these three cost components from $1.93×105 in benchmark 

scenario (I) to $1.32×105 in scenario (III), compared to the amount of $1.73×105 in scenario (II). 

Another interesting finding is that as traffic congestion and in-facility waiting delay are 

integrated into the objective, a customer may no longer be assigned to its nearest functioning 

service facility. For example in scenario (III), node 6 is much closer to nodes 7, 16 and 18, 

however, all these three customer groups are assigned to node 4 as their level-1 service facility. 

This is not surprising, as distance no longer plays a significant role in determining costs. 
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Figure 2. Facility location, leverl-1 assignment and service capacity for the Sioux-Falls network. 
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2.6 Conclusion 

In this study, traffic congestion, in-facility waiting delay and service disruption 

uncertainty were incorporated into a stochastic facility location model. It determines the optimal 

facility location, capacity allocation, customer-to-facility assignment, traffic network routing, 

and in-facility system operation strategies across all normal and possible service disruption 

scenarios to minimize the overall expected system cost. An approximate MINLP model was 

proposed to reduce the computational complexity associated with the original model, and an LR 

based solution approach was developed to solve the approximation model. A conic program 

transformation method was used to further simplify and solve one of the hard sub-problems (for 

facility location and service allocation decisions). We further developed lower and upper bounds 

for the optimal objectives of both the approximation model and the original stochastic problem. 

Numerical experiments shows that the proposed approximation model indeed provides a good 

approximation of the optimal reliable service facility location design, and the LR based 

algorithm is shown to obtain near-optimum solutions within a relative short time. Some useful 

managerial is also drawn through a series of sensitivity analyses. 

Future research can be conducted in a number of directions. This project makes several 

simplifying assumptions and approximations, e.g., identical and independent facility disruptions 

and M/M/1 queuing systems. It is worthwhile to explore ways to relax these assumptions in the 

future. Furthermore, our work can be potentially extended to large-scale instances, so it might be 

appealing to develop more efficient algorithm or explore alternative models with better 

computational scalability. 
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CHAPTER 3.  LOCATING FACILITIES IN DISASTERS WITH CONSIDERATION OF 

SOCIAL COSTS 

3.1 Background 

There is a significant amount of research in the area of modeling emergency operations for 

ambulance location, ambulance redeployment, hospitals and fire stations. However, 

humanitarian supply chain, as a research area, is relatively new (Sheu 2007). One category 

explores the dynamics of geographical facility location with respect to other factors such as cost, 

and service. It uses facility location models to identify optimal locations for pre-positioning of 

supplies, shelters, and other critical resources. This problem has mostly been addressed as a 

discrete facility location problem or as assignment problem. Under this perspective, Akkihal 

(Akkihal 2006) has addressed the problem of locating worldwide distribution centers using an 

algorithm that solves the uncapacitated facility location problem (UFLP). This is one of the 

initial works in addressing the problem using a demand function based on population needs. 

Given that this model uses a discrete UFLP each demand point is an aggregation of the demand 

in the area. 

In the same line of locating worldwide distribution centers, Balcik and Beamon (Balcik and 

Beamon 2008) propose a model for the pre-positioning problem. They assume that the supplies 

are pre-positioned in a distribution center. The model is a modified version of a traditional 

location problem called the maximal covering location problem (see Daskin 1995 and the 

references therein) that includes an inventory model at each distribution center. The demands are 

based on scenarios, where each scenario has a probability of occurrence. The response time is 

addressed using a level of service, which is defined by lower and upper limits in response time. 
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More specifically, depending on the distance, there is a coverage level which depends on the 

scenario. In a more regional and local perspective, Ukkusuri and Yushimito (Ukkusuri and 

Yushimito 2008) have addressed the location problem that includes routing decisions. Since 

routes can be disrupted, they provide a methodology to locate the warehouses in places that 

assure that the most reliable path between the demand point and the pre-positioning places are 

chosen. Rawls and Turnquist (Rawls and Turnquist 2009) developed an emergency response 

planning tool that determines the location and quantities of various types of emergency supplies 

using a two-stage stochastic mixed integer program (SMIP) taking into consideration the 

transportation network availability after an event. 

 A few authors have studied problems related to distributing the critical supplies as well. Tzeng 

et al. (Tzeng et al 2007) use an approach where commodities need to be collected at distribution 

centers and delivered to the demand points. The model includes transfer points, which can also 

be demand points. Horner and Downs (Horner and Downs 2007) developed a model linked to a 

Geographic Information System (GIS) that identifies accessible locations in which to place intra-

urban uncapacitated relief goods distribution sites. The work by Maliszewski and Horner (2010) 

provides a similar GIS framework for siting critical supply chain infrastructure. Building upon 

this model the authors (Horner and Downs 2008) later proposed a spatial model for hurricane 

relief goods distribution, suggesting the location of intermediate distribution stations using a 

capacitated facility location problem in which they seek to minimize the transportation costs. The 

following section seeks to provide another perspective in the location problem for disasters.  
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3. 2 Some Theoretical Aspects of Location for Disasters 

One of the early stages of disaster preparedness involves the selection of facilities from a 

specified set of locations or finding the strategic locations where distribution centers or facilities 

could be built, that would be used to provide relief in case of a disaster. In simplified 

geographical terms, the possible locations could be represented by a vector xi with coordinates 

),( 21 ii xx  in a two dimensional cartesian space S . Our main objective is the coverage of a region 

satisfying certain criteria that are unique in disaster relief. As mentioned in Balcik and Beamon 

(Balcik and Beamon 2008), models with coverage objectives are the most appropriate ones when 

response time is the primary objective.  In these models, coverage is defined as the ability to 

reach a demand point from a facility within a specific response time. This section explains these 

criteria and how it is related to the Voronoi diagram. These concepts are important because they 

are the basis for the development of the heuristic in Section 5. 

 
Location theory states that if facilities can provide the same utility with a transportation 

cost function )( idt  defined in terms of id  which is a measure of distance between facility xi to a 

demand point x, for instance 
2/1

)()( xxxxxxd i
T

iii −−=−= (Euclidean distance). Then each 

demand point will use the facility 

 

i ∈ I  if it maximizes his/her total utility )( ii dtu − , that is, 

whenever )(max iiIi
dtu −

∈
. If all facilities provide the same utility, then the previous maximization 

problem is equivalent to )(min iIi
dt

∈
. In the discrete version, this is equivalent to minimize the total 

transportation cost from the node selected as facility to the demand point. Most optimization 

models consider this. In the continuous case, the problem is more complicated because there is 

not a finite number of locations. As noted by Akkihal (Akkihal 2006) the treatment of continuous 
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demand as an area or surface might approximate better human settlements, making it more 

appropriate than discrete models. In this case, given that the demand is assumed to be distributed 

over an area, the problem tries to divide the region such that the demand is assigned to a region 

enclosed around the selected facility. For instance, if the distance that we seek to optimize is the 

average distance, the problem falls under the class of continuous p-median problem. As 

presented by Okabe and Suzuki (1997), this is a class of location problems that can be solved 

through Voronoi diagrams. Therefore, the partition can be assumed as follows: the total region 

covered by facility i is given by { }IjxxxxxxV jii ∈−≤−= ,:)(  which is nothing but the 

Voronoi Diagram1 or Thiesen Polygon. 

 
Moreover, the socially optimal configuration definition is the one in which the total 

transportation cost of delivering goods to all customers in the region is minimum. 

Mathematically, if F(X) represents the total cost, provided that the facilities are located at X, it 

can be expressed by 

  

∑ ∫
= ∈

−=
n

i xVx
i

i

dxxxXF
1 )(

)(     (1) 

 

and the social optimal configuration is given by 

 

)(min*)( XFXF
X χ∈

=      (2) 

1In mathematics, a Voronoi diagram is a special kind of partitioning a space determined by distances to a specific 
set of points in the same space. In its simplest case, we are given a set of points S in the plane, which are the 
Voronoi sites. Each site has a Voronoi cell consisting of all points closer to the Voronoi site j than to any other 
site (see Aurenhammer (1991) for a complete discussion). 
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where χ is the set of all possible locations X on region S.  

The previous model falls in the category of geographical optimization problems for commercial 

supply chains. In the traditional approach, the focus is on maximizing efficiency measures such 

as delivery cost. However, as mentioned in Section 1, Holguín-Veras et al. (Holguin-Veras et al. 

2006) and Beamon and Balcik (Beamon and Balcik 2005) have recognized, the particular 

characteristics and challenges of humanitarian logistics.  In particular Holguin-Veras et al. 

(Holguin-Veras et al. 2010) have addressed the need to incorporate the social costs of delivering 

goods to areas affected by large disasters. Rather than defining operational success in terms of 

travel time, total cost, or even cargo delivered, for humanitarian supply chains, they propose that 

the primary objective is the minimization of human suffering. These social benefits (or its 

negative, the social costs) may be estimated with valuation techniques from theoretical 

economics, such as stated preference experiments, in which participants state how much they 

would pay for a particular good if they have not had it for a specified period of time. The 

valuations from a reasonable responder would be sensitive to the type and time interval without 

the commodity, thus providing decision makers a common economic measure to evaluate 

distribution alternatives. Based on these assumptions they propose a deprivation cost function of 

the form:  

 

)()( tePopulationtf ∆+×=∆ βα     (3) 
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where ∆t is the time (deprivation time) since the last delivery was received at the node, 

 

e  is the 

mathematical constant for the inverse natural logarithm and α, β are parameters calibrated using 

econometric techniques.  

The population can be replaced by a demand density function D(x) of the area affected, and by 

assuming that greater distances will imply larger deprivation times (due to cycle times) 

(Holguin-Veras et al. 2010), this difference in time can be put in terms of distance d using a 

function of urgency that increases with distance, provided that an increase in distance represents 

an increase in time. This issue has also been discussed by Akkihal, 2007: “…the critical factor, 

outbound transportation time, is minimized as the stocks are positioned closer to the demand 

point…”, that is inventory positioned near demand points yields to lower lead times. In other 

words, we obtain a function in terms of distance f(d) and each facility i that is attempting to 

minimize total suffering would like to )(min iIi
df

∈
. As a consequence, the resulting problem that 

should be solved in order to attain the optimal configuration would be 

)(min*)( XFXF
X χ∈

=      (4) 

Where 

∑ ∫
= ∈

+=
n

i xVx

df

i

dxexDXF
1 )(

))(()()( βα    (5) 

 

The next section provides a more formal definition of the problem. We present an approach 

for the discrete version of this problem that is able to solve a large number of demand points 

distributed over an area, which can approximate a continuous demand function.  
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3.3 Problem Statement 
 
The problem can be stated as follows: we focus on identifying a strategic set of locations for a 

pre-specified number n of facilities to be sited in a continuous, two-dimensional region such that 

(1) all demand points are covered while (2) minimizing the urgency social function shown in 

Equation 3. Given the limited information available regarding demand distributions for this type 

of problems, we present the discrete version of the problem. That is, we aggregate the demand 

into discrete points in the two-dimensional region. However, a continuous demand function can 

be approximated using a sufficient number of discrete demand points. Another assumption 

implies that given that we are looking for the strategic locations where facilities are going to be 

sited, there are no restrictions on the location of the facilities and their capacities. 

Mathematically, this problem (P1) can be expressed by )(min XF , where the objective function 

can be written as: 

 

P1    ∑∑
= =

=
n

i

m

j

df
j

jjepXF
1 1

)()(      (6) 

and 

 I  is the set of facilities (1…n) 

 J  is the set of demand points (1…m) 

ijd  is the maximum distance between the demand area j and the prospective facility I. 

For example it can be computed as ij xx −  or any other type of distance measure 

(network distance, Hamiltonian distance.) 

jf  is a function of urgency that depends on distance. For example: fj =α + βdij, 
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The next section proposes a solution heuristic to find the locations, solving the proposed 

minimization problem. The reason for using the heuristic is because of the non-convex nature of 

problem P1. The heuristic is an iterative process that can only guarantee local minima which 

depends largely on the initial solution. We also address the issue of selecting an initial set of 

locations later on in Section 6.  

3.4 Solution Method 

Given that, to approximate a continuous demand function with discrete demand points a 

significantly large number of demand points is required, and that the problem has a non-convex 

objective function we propose a heuristic to solve the problem presented in Section 4 bearing a 

tradeoff between running time and optimality.  Additional assumptions for this heuristic are: 

• The region S under analysis is a convex polygon in the plane. 

• The facilities have infinite capacities and have no probability of failure. 

• The urgency function is a direct function of distance. In this case, it is assumed as a function of 

the Euclidean distance ixjxdf −+= βα)( . However, as it was also explained earlier it 

can be any other type of distance measure such as network distance. 

 
Heuristic Approach for the Discrete Case  
In this section we present a solution heuristic based on Voronoi diagrams. The heuristic 

procedure has to find the best Voronoi diagram following iteratively the 5 steps discussed below. 

It follows the intuition of the heuristic developed by Suzuki and Drezner (Suzuki and Drezner 

1996) with the difference that we solve a sub-problem to improve the location at each iteration. 

Moreover, we use a method that does not require the computation of derivatives which allows 

speeding up the heuristic (see Section 5.2 for the solution of the sub-problem): 
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• Step 1 Choose an initial set of n random points in the plane and set ∞=bestZ . The strategy for 

selecting the initial points is addressed in Section 6. 

• Step 2 Construct a Voronoi diagram using each random point as a Voronoi site i (our initial 

facility location). 

• Step 3 For each Voronoi cell V(xi) assign all demand points k located in the Voronoi cell V(xi) and 

solve the following sub-problem SP1: 

( )∑
=

−+







k

j

xx
j

ijep
1

min βα      

 (7) 

s.t.  

 )( ii xVx ∈  

 

Notice that we are solving a relaxation of the problem (P1) for all the points assigned to V(xi). 

• Step 4 Compute the objective function (social optimal configuration) replacing the values of the 

distances in Equation 6. That is, at iteration t we compute 
( )∑∑

= =

−+





=

n

i

m

j

xx
j

t ijepZ
1 1

βα   

  

• Step 5 If the following convergence criteria is satisfied ε<− bestt ZZmax , then stop. 

Otherwise, if bestt ZZ < make tbest ZZ = and go to Step 2. If bestt ZZ > go to Step 2. 

  

Notice that the heuristic first constructs a Voronoi diagram using an initial set of random points. 

Then, instead of computing the center of the polygon by allocating the demands in the vertices of 

the Voronoi cells as in Suzuki and Drezner (Suzuki and Drezner 1996) for the continuous case, 
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we solve the sub-problem (SP1) in Step 4 (see Figure 2) by using the demand points and finding 

the p-median solution of this sub-problem. 

Then, we re-compute the objective function (see Equation 6). The process is repeated until a 

convergence criterion is satisfied. The convergence criterion is based on either the maximum 

number of iterations (for large problems) or the objective function does not change by a pre-

defined factor ε. 

Figure 2 represents the process of improving at each iteration for n = 5  (number of facilities) and 

n=50  (number of demand points) in planar region [0,1]. The initial 5 locations of the Voronoi 

sites were chosen randomly. The process starts by setting the initial location of the facilities (red 

squares) and constructing the Voronoi diagram. Then using the demand points that belong to this 

Voronoi cell we solve the problem and find the new Voronoi site (blue star) and proceed as 

indicated in Steps 4 and 5. The next iteration starts with constructing the Voronoi cells using the 

solution from the previous iteration.  
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ITERATION 
1

 

ITERATION 
2

 
ITERATION 3 

 

ITERATION 4 

 

 

 

 Demand Point 
  

 Location at iteration i-1  Location at iteration i 

Figure 1. Example of first 4 iterations of the heuristic for a problem with facilities (m) = 10, demand 
points (n)= 100 
 
Solution of the Sub-problems 
 
As it can be observed in previous section, the heuristic requires the solution of a nonlinear 

optimization sub-problem at Step 3. In this subsection we discuss a solution approach for both 
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sub-problems. Both sub-problems are non-linear unconstrained optimization problems of the 

form )(min
)(

xFixVx i∈
, that is, it is only unconstrained in the region defined by the Voronoi set V(xi). 

This complicates the problem in the sense that the problem becomes a constrained non-linear 

optimization problem. Solving this type of problem is usually computationally expensive. We 

propose a Nelder-Mead based solution of the sub-problem (Nocedal and Wright 2005).  

The Nelder-Mead simplex-reflection method is a popular Derivative Free Optimization method 

that searches for an improving solution in the convex hull formed by n+1 points of interest 

in nℜ (see Figure 3 for the main steps pg the method). This convex hull should form a non-

degenerate simplex2 S with vertices 

 

y1, y2,..., yn +1{ }. A single iteration implies the evaluation of 

these vertices and removes the vertex with the worst function value. This value is replaced by 

another point with a better value by reflecting, expanding or contracting the simplex along the 

line joining the worst vertex with the centroid of the remaining vertices.  For instance, suppose 

that we want to minimize a function f(.) and that the initial vertices of the simplex are 

},,{ 321 yyy with )()()( 321 yfyfyf ≤≤ . If the centroid is denoted by y , then the line joining the 

centroid with the worst vertex is denoted by  

)()( 3 yytyty −+=      (8) 

 

The value of the scalar t allows us to get the reflection point and its expansion or contraction. By 

selecting an appropriate initial simplex we can maintain the search inside of our current Voronoi 

set. In Section 7 we show that this heuristic provides good solutions when we compare the 

results with the optimal value. 

2 A simplex is not degenerate if the matrix Q, formed with the distances of the n edges from one of its vertices, is 
not a singular.  
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1  Compute the reflection point )1(−y and evaluate ))1((1 −=− yff   
2  if )()( 11 nyffyf <≤ −  

3    replace 1+ny  by )1(−y and go to next iteration 

4  else if )( 11 yff <−  
4 compute )2(−y and evaluate ))2((1 −=− yff  
5 if 12 −− < ff  
6    replace 1+ny by 2−y and go to next iteration 
7 else 
8    replace 1+ny by 1−y and go to next iteration 

9 else if )(1 nyff ≥−  

10 if )()( 11 +− <≤ nn yffyf  

11    evaluate )2/1(2/1 −=− yf   

12    if 12/1 −− ≤ ff  

13          replace 1+ny by 2/1−y and go to next iteration 
14 else 
15    evaluate )2/1(2/1 yf =  

16       if `2/1 +< nff  

17          replace 1+ny by 2/1y and go to next iteration 

18 Replace ))(2/1( 1 ii yyy +← for 1....,3,2 += ni  
 

Figure 2 One step of the Nelder-Mead Procedure (Nocedal and Wright 2005) 

3.4 Selection of the Initial Set Points 

As explained in Section 4, this is a non-convex nonlinear problem. That is, it can have multiple 

local solutions. Our experimental results have confirmed the insights from Suzuki and Okabe 

(Suzuki and Okabe 1995) that the initial set of solutions for constructing the Voronoi diagrams 

has an important influence on the quality of the final solution. They suggest a Monte Carlo 

sampling (we will refer this method as simply random sampling), i.e. the coordinates of the 

starting points were randomly generated following a Uniform distribution (0,1). We have 

evaluated this approach and, alternatively, we tested two additional strategies for selecting initial 
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feasible facility locations. The strategies are based on two other well-known sampling methods: 

(i) proportional sampling based approach and (ii) latin hypercube sampling (LHS).  

The proportional sampling based approach allocates initial points randomly based on density of 

points in a pre-defined area. For example, the area under study can be divided into smaller sub-

areas. In each sub-area, we randomly allocate initial points proportional to the number of demand 

points contained in this subarea. For this test, we divided the square plane into 4 equal squares, 

and then, the number of facilities was proportionally assigned to the number of demand points in 

each square. The coordinates of the facilities generated at each small square were generated 

randomly following a Uniform distribution.  

The latin hypercube sampling is a stratified-random procedure where samples are obtained from 

their distributions. The cumulative distribution for each variable is divided into N equi-probable 

intervals. Assuming that the variables are independent, a value is selected randomly from each 

interval. For this sampling procedure we assume that the distribution is known apriori, by 

developing an empirical distribution from the demand points.  

We tested the performance of each strategy procedure using a square plane with vertices at 

(0,0), (0,1), (1,0) and (1,1) as area of study. In this area, we randomly generate a set of 10 

problems fixing the number of facilities at 10 and using 100 (small problem) and 1000 (large 

problem) demand points. That is, at each combination of facilities and demand points we 

randomly generated 10 different sets of demand points. Each problem was solved using 20 

different starting points for the facilities for each strategy. The coordinates (x,y) of the demand 

points were generated using two different distributions: (1) Uniform distribution U(0,1) and a 

truncated Normal distribution with mean 0.5 and standard deviation of 0.15, where values under 

0 where set at 0.01 and values over 1 were set at 0.99 in order to avoid points in the boundary of 
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the square region. For these evaluations, the social cost function used was 

max2.2}max{2.2 1.01.0 ijij dxx ee =− where pj = 1 in Equation 6. 

Comparison between sampling strategies 

Tables 1a and 1b present the performance in the solution achieved using all strategies. We use 

three measures to evaluate the quality of the solution (see Table 1a).  

The first measure is the number of problems where the strategy achieved the best solution 

(Problems –Best solution achieved).  That is, after running the experiments we counted the 

number of problems out of the 10 problems where the best solution (minimum) was obtained 

from all 20 initial random points under all strategies. In both, large and small problems, the 

sampling strategy achieved the best solution in more problems. The Monte Carlo procedure only 

achieved the best solution in two of the large problems under the truncated normal distribution 

and in one of the small problems. 

The other two measures are (1) the performance of the average case (Average Case) by 

comparing how far (in percentage) is the average of each of the solutions in each problem from 

the best solution among all strategies; and (2) the performance of the worst solution (Worst 

Case) achieved as compared with the best solution. Under all strategies, the heuristic provided an 

acceptable range of solutions. The maximum deviation from the best solution (10.54%) is 

obtained using the Monte Carlo procedure in the truncated small problem. The best results are 

obtained using the sampling procedures. For small problems (m =10 and n = 100), it can be 

observed that the proportional sampling based approach does not differ significantly from the 

non-sampling approach. However this difference becomes more significant as the problem size 

increases. Another important insight is that as the problem becomes larger the solution found is 
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closer to the best solution achieved for all the strategies compared. In large problems the worst 

performance is obtained using the random sampling (around 2.64%) whenever the other 

sampling procedures have worst performances of 1.22% (latin hypercube) and 2.22% 

(proportional sampling). 

In terms of CPU time, we computed the mean, the minimum time and the worst time. The results 

(see Table 1b) showed similar running times for small problems for all strategies. However, for 

large problems, the latin hypercube sampling obtained a solution faster than the other two 

methods. 

For the comparison between sampling strategies different than Monte Carlo, we use the same 

performance metrics as described above in addition to the CPU time. In terms of CPU time, in 

small and large problems, the latin hypercube average running time is lower than the average 

running time using the proportional sampling based approach (see Table 1b). The situation is 

similar for the minimum running time and the maximum running time. The latin hypercube 

sampling shows a small standard deviation on the final solutions as compared to the other 

solution techniques. It was observed that the solution quality using the proportional sampling 

technique is slightly better than the latin hypercube sampling approach.  
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Table 1. Comparison between Strategies for Initial Points 
 
a. Objective 
Function             

              
  Random Proportional Sampling (PS) Latin Hypercube (LH)    

  

Problems - 
Best 

solution 
achieved 

Average 
Perfomance 

Worst 
Case 

Problems – 
Best 

solution 
achieved 

Average 
Perfomance 

Worst 
Case 

Problems - 
Best 

solution 
achieved 

Average 
Perfomance 

Worst 
Case 

   

Normal 
Distribution 

m= 10,    
n = 100 0 7.17% 10.54% 0 6.16% 9.23% 10 0.62% 1.57%    

m = 10,  
n = 1000 2 1.44% 2.64% 6 0.76% 2.22% 2 0.91% 1.22%    

Uniform 
Distribution 

m= 10,    
n = 100 1 3.3% 6.79% 5 1.81% 2.42% 4 2.35% 3.61%    

m = 10,  
n = 1000 0 1.21% 1.96% 4 0.52% 1.22% 6 0.93% 1.52%    

              
b. CPU Time (in seconds)            
              

  Random Proportional Sampling Latin Hypercube 

  Average Min Max Stdev Average Min Max Stdev Average Min Max Stdev 

Normal 
Distribution 

m= 10,    
n = 100 1.3265 0.7819 2.0567 0.3702 1.3091 0.7273 2.0263 0.3426 1.2782 0.7896 2.0997 0.3286 

m = 10,  
n = 1000 13.2530 7.7829 22.0181 3.9435 13.7738 7.4976 23.7390 4.5062 11.4983 19.9209 6.5616 3.4931 

Uniform 
Distribution 

m= 10,    
n = 100 1.1344 0.7110 1.8606 0.3072 1.1244 0.6855 1.7373 0.2945 1.1021 0.6879 1.7608 0.2977 

m = 10,  
n = 1000 16.0034 8.9597 26.9445 5.0202 13.0964 7.3041 21.6188 4.0050 12.8036 6.7021 20.4223 3.8583 
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3.5 Computational Evaluation 

Our experimental results have confirmed the insight from Suzuki and Okabe (Suzuki and 

Okabe 1995) that, given the non-convexity of the problem, the initial set of solutions for 

constructing the Voronoi diagrams has an influence on the final solution. However, to 

assess the quality of the result as compared with the solution obtained using other solvers, 

we coded the algorithm in Matlab 7.0 using the built-in function for computing the 

Voronoi diagram using Delaunay triangulation while the Nelder-Mead method has been 

coded also in Matlab 7.0 (Mathworks, 2010) as an additional function. We generated a 

set of 16 problems varying the number of facilities from 1-50 and the demand points 

from 10-5000 (see Table 2 and 3). Similar to section 5 we used a square region with 

vertices at (0,0), (0,1), (1,0) and (1,1). Each demand point was generated randomly 

following the two distributions, Uniform(0,1) and Normal distribution as discussed in 

section 5. The facilities were initially located using the proportional hypercube sampling 

method and the cost was the same as the one used in Section 5. 

To assess the quality of the solution we chose a subset of these problems and solved the 

p-median Uncapacited Facility Location version of the problem using a specialized 

global solver for mixed non-linear integer programming, Branch-And-Reduce 

Optimization Navigator (BARON).  BARON is a computational system for solving non-

convex optimization problems to global optimality for purely continuous, purely integer, 

and mixed-integer nonlinear problems.  The subset of problem corresponds to the first 



 2 

eight problems generated, which were solved using the NEOS Server. On the other hand, 

the heuristic is run on a Pentium Core 2 Duo desktop of 2.3 Ghz and 2 Gb of RAM.  

Tables 2 and 3 report the best solution obtained by the heuristic after running 10 different 

starting points. We also report the best solution obtained by BARON.    

In the truncated normally generated demand points the heuristic reports a very close 

lower bound of the solution in the range of -12% and 0.02%. For the uniformly generated 

data, the gap between the solutions obtained by the heuristic and BARON were in the 

range of -6.45% and 7.56%. Moreover, the variation among solutions (see standard 

deviation of the solution in Tables 2 and 3) obtained through each different initial point 

generated, were very low, which shows the robustness of the heuristic.  

We do not report the CPU time for BARON because the conditions for comparison were 

not the same. Our heuristic instead solved the largest problem (m= 20 and n =5000) 

problem in 3094 and 2001 seconds for the truncated and uniformly distributed demands 

respectively. This includes the total time for 10 different initial points. Observe also that 

the solutions achieved had small standard deviations.     
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Table 2. Comparison between Voronoi Heuristc and BARON solver for points generated with a 

truncated normal distribution 

  
Proportional Sampling  

BARON 
% Diff   (10 different starting points) 

Facilities 
(m) 

Demand 
(n) Best Solution Tot. CPU 

Time (in sec) 
Std. Dev. of 
Solutions 

Optimal 
Solution 

2 10 1.3823 3.3090 0.0000  1.5730 -12.12% 
3 10 1.2586 2.0921 0.0411  1.3934 -9.67% 
4 10 1.1807 2.0439 0.0384  1.3418 -12.01% 
5 10 1.137 2.3077 0.0450  1.1813 -3.75% 
3 20 2.8997 2.8554 0.0361  2.8990 0.02% 
4 20 2.7069 3.4080 0.0621  2.7719 -2.34% 

5 20 2.5235 5.2752 0.0516  2.5315 -0.32% 

10 50 5.7735 7.6316 0.0431   
5 100 12.7765 9.2918 0.0720   
10 100 11.8284 10.5054 0.0591   
20 100 11.0720 17.4371 0.0441   
10 1000 119.0752 140.1177 0.2718   
20 1000 113.2694 177.0186 0.0592   
50 1000 107.9404 257.5415 0.0611   
20 5000 565.5630 1425.4045 0.1374   
50 5000 540.7252 3094.8271 0.2006   
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Table 3 Comparison between Voronoi Heuristc and BARON solver for points generated with a 
uniform distribution 

  
Proportional Sampling  BARON 

% Diff   (10 different starting points)   

Facilities 
(m) 

Demand 
(n) Best Solution Tot. CPU Time 

(in sec) 
Std. Dev. of 
Solutions 

Optimal 
Solution 

2 10 1.8852 1.0930 0.1090 1.9472 -3.18% 
3 10 1.6679 0.4949 0.0518 1.5506 7.56% 
4 10 1.342 0.9046 0.0992 1.3038 2.93% 
5 10 1.2068 1.9060 0.1529 1.2367 -2.42% 
3 20 3.4875 2.5949 0.0425 3.4875 0.00% 
4 20 3.0621 3.2182 0.1293 3.0621 0.00% 

5 20 2.8042 0.8209 0.1077 2.9976 -6.45% 

10 50 6.0959 4.9932 0.0522   
5 100 14.5258 6.8529 0.1089   

10 100 12.7087 9.5084 0.1197   
20 100 11.5600 13.0731 0.0689   
10 1000 131.0937 112.3177 0.1776   
20 1000 119.7891 106.0767 0.2790   
50 1000 111.4911 424.5710 0.1483   
20 5000 604.6945 2001.9042 0.2937   

50 5000 561.8537 2090.6907 0.2435   

3.6 Example 

In this section, we provide an application example using data from Hurricane Katrina. 

According to the Congressional Research Service (CRS) report for Congress about 

Hurricane Katrina (Gabe et al. 2005), more than 700,000 people were acutely impacted 

by hurricane Katrina; these people lived in neighborhoods either affected by the flooding 
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or with significant structural damage. According to the White House report of the Federal 

Response to Hurricane Katrina (2006), assets were pre-deployed at different sites 

throughout the region to encircle the forecasted impact area.  

For this application example, we chose 33 locations, among parishes and counties from 6 

metropolitan areas in Louisiana and 5 metropolitan areas in Mississippi, as demand 

points (see Table 4). We transformed the data so that we can use the algorithm enclosing 

the resulting points and the study area into a square with vertices at (0,0), (0,1), (1,0) and 

(1,1).  

We first evaluated the base case or actual locations for pre-positioning (Figure 3a) for 

which the objective function based on an arbitrarily chosen cost function ( )ijd
j ep 2.21.0  

was computed. Note also that, by constructing the Voronoi diagram using the actual 

facilities, one of the warehouses has no demand point assigned (see Figure 3a). Then we 

run the algorithm, using the proportional sampling based approach, for 10 different initial 

points, keeping the best value obtained. We repeated this process for 3, 4, and 5 facilities.  

The results obtained are presented in Table 5. To provide more meaningful results, we 

transformed the results in total distance traveled from each demand point to its 

corresponding facility using the real distance between latitudes and longitudes in miles. 

The calculation assumes the earth is a perfect sphere of radius 3,963.1 miles using the 

coordinates of the actual facilities and the ones obtained through the heuristic. 

From the results it is interesting to note that even for the case with 3 facilities, the 

solution can be improved up to 52.5% in total miles traveled and 50% in average miles. 

Figure 3b shows the best solutions for 4 points, which reduces the total miles traveled 
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from 4,644.45 miles to 2,304 miles and the average distance traveled from the facilities to 

their assigned demand points reduces from 164.5 miles to 69.83. Moreover, Table 5 

shows that in all cases there are savings in terms of distance of around 50%. Furthermore, 

if we account for the coverage measured by population per mile traveled, the 

improvements are more significant (see Table 6). 

These results have two important implications: (1) that using a Voronoi diagram to assess 

the coverage of the warehouse can give us an accurate estimate of the total area covered, 

and (2) that by using the proposed heuristic we were able to provide locations with less 

distance traveled from the warehouse to the demand point. 

 
 

Table 4. Location of Demand Points and the warehouses used during Katrina Hurricane 
No. City Population  No. City Population 

1 Ascension   94,520   18 St. Bernard   67,229  

2 
East Baton Rouge (Central City: 
Baton Rouge)   424,597   19 

St. Charles  
 48,072  

3 East Feliciana   20,802   20 St. John the Baptist   43,044  
4 Iberville   32,526   21 St. Tammany   191,268  
5 Livingston   112,445   22 Hancock   42,967  
6 Pointe Coupee   22,212   23 Harrison (Central City: Gulfport-Biloxi)   189,601  
7 West Baton Rouge   22,126   24 Stone   13,622  
8 West Feliciana   15,111   25 Forrest (Central City: Hattiesburg)   72,604  
9 Lafourche   89,974   26 Perry   12,138  

10 Terrebonne (Central City: Houma)   104,503   27 Copiah   28,757  
11 St. Martin   48,583   28 Hinds (Central City: Jackson)   250,800  
12 Lafayette (Central City: Lafayette)   190,503   29 Madison   74,674  
13 Calcasieu   183,577   30 Rankin   115,327  

14 
Cameron (Central City: Lake 
Charles)   9,991   31 Simpson   27,639  

15 Jefferson   455,466   32 George   19,144  

16 
Orleans (Central City: New 
Orleans)   484,674   33 Jackson (Central City: Pascagoula)   131,420  

17 Plaquemines   26,757         
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a) Location of warehouses during Hurricane Katrina 
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b) Location of warehouses (Heuristic solution) 
 

Figure 3. Comparison between location of warehouses under Hurricane Katrina and the solution 
achieved using the Voronoi heuristic 
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Table 5 Results for Real World Case: Katrina actual warehouse locations vs. results using the 
heuristic (using 10 different initial points) 

  Total Distance  Average Distance Min Distance Max Distance 

  Miles % Improv. Miles % Improv. Miles Miles 
n=3 2,203.88 52.55% 72.00 50.39% 15.79 271.22 
n=4 2,304.30 50.39% 69.83 51.89% 15.8  158.52 
n=5 2,223.77 52.12% 67.39 53.57% 2.38 140.05 
Actual 
Locations 4,664.45   145.14   70.26 223.73 

 

Table 6 Results using miles-population 

  
Total 

Population/Mile 
Average 
Pop/Mile 

Min 
Pop/Mil 

Max 
Pop/Mile 

n=3 78,341.9 2,448.2 63.0 26,892.0 
n=4 82,203.0 2,491.0 63.0 26,865.0 
n=5 147,925.8 4,482.6 117.3 80,171.3 
Actual 
Locations 25,319.6 791.2 59.7 4,248.1 
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CHAPTER 4.  CONCLUSIONS 

This chapter summarizes the research, highlights its contributions, and proposes 

directions for future research. 

4.1 Summary 

This study addresses the two primary objectives: 

1. Determines a methodological framework for planning of service facility 

locations under high demand requires consideration of customers’ en-route travel and 

their in-facility delay, as well as the reliability of service facilities against natural or man-

made hazards. This project first presents a scenario-based mixed-integer non-linear 

program (MINLP) model that integrates service disruption risks, en-route traffic 

congestion and in-facility delay into an integrated facility location problem. We derive 

lower and upper bounds to this highly complex problem by approximating the expected 

system costs associated with customer arrival, en-route travel, in-facility delay, and 

service. This allows us to develop a more tractable approximate MINLP formulation 

to minimize the expected overall system cost under all probabilistic service disruption 

scenarios. We also develop a Lagrangian relaxation (LR) based solution approach to 

decompose the integer and continuous variables of this approximation model, and 

reformulate the relaxed sub-problem for location and service allocation decisions into a 

conic program. Numerical experiments show that the approximation model and LR 

solution approach are capable of overcoming the computational difficulties associated 

with reliable service facility location design. Managerial insights are drawn from a series 

of case studies and sensitivity analyses. 
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2. In this project we have discussed the issue of finding appropriate location for 

sitting distribution centers for disasters by addressing one of the challenges of 

humanitarian logistics: response time. Given that social cost functions have 

gained relevance in models for disasters, we have proposed a model that 

incorporates these social costs. The social cost function in this case has been 

defined as urgency delivery cost, which is distance based, and results in a 

nonlinear non-convex model. Due to the non-convex nature of the social cost 

function chosen the problem might have a multiple solutions.  Moreover, in 

order to approximate continuous demand functions a large number of demand 

points are required, increasing the complexity of finding optimal solutions. For 

these reasons we propose a heuristic constructed under the idea of Voronoi 

diagrams. Computational results showed that the heuristic achieves high-

quality solutions in reasonable time. We have also provided an evaluation of 

strategies for selecting the initial starting points for the heuristic, which helps to 

speed it up and reduces the standard deviation of the solutions that can be 

achieved, improving its robustness. Contrary to this approach, which is limited 

in the sense that we are assuming direct deliveries, similar to the ones proposed 

by Balcik and Beamon (Balcik and Beamon, 2008) and uncapacitated 

(Akkihal, 2006), future research is intended to not only find optimal locations 

but to also include routes in the optimization problem (last mile distribution). 
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4.2 Future research directions 

The present research addressed the problem of facility location and rerouting of 

traffic in disasters. Future research directions include considering network equilibrium 

conditions, facility congestion costs and external validation with multiple disasters. This 

project is an important step in that direction. 
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